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Abstract-Recently, non-axisymmetric convection in vertical directional solidification experiments has 
been observed. It has been suggested that the asymmetry is due to lack of azimuthal symmetry in imposed 
temperature and that the flow asymmetry will decrease with increasing velocities. Motivated by these 
observations we have examined the consequences of deviations from axisymmetric wall temperature 
conditions in a vertical differentially heated cylinder. We show that the degree of flow asymmetry depends 
on the ratio, A,, between the amplitudes of the maximum azimuthal and vertical temperature differences, 
and that for a fixed value of this ratio the flow asymmetry increases with increasing flow velocity (Rayleigh 

number). 

1. INTRODUCTION 

THE CHARACTER of convection during solidification 
has been examined using numerical models of buoy- 
ancy-driven convection in cylindrical and rectangular 
geometries. Early work examined a variety of imposed 
temperature boundary conditions [l-7]. These range 
from purely vertical temperature gradients which 
result in convection after a critical value of the 
Rayleigh number is exceeded [46], to idealized condi- 
tions associated with Bridgman-Stockbarger furnaces 
[3] which are imposed directly on the melt and crystal 
without consideration of the heat transfer between the 
ampoule, furnace and sample. For these boundary 
conditions, flow always occurs owing to the presence 
of radial temperature gradients. Later models have 
accounted for the presence of the ampoule and the 
details of furnace design [8,9]. In practice, the thermal 
profile of the inner surface of the furnace is not real- 
ized at the ampoule wall ; it is modified by heat transfer 
between the crystal, melt, ampoule and the furnace 
itself. The tendency is to reduce axial temperature 
gradients, while radial temperature gradients may 
increase or decrease depending on the specific nature 
of the heat transfer between the crystal, melt and 
ampoule [8]. Crespo de1 Arco and Bontoux [lo] 
studied the occurrence of asymmetric flows in cylin- 
drical cavities. These studies were restricted to cases 
for which the thermal boundary conditions possessed 
azimuthal symmetry. 

Recently, non-axisymmetric convection has been 
observed in directional solidification experiments con- 
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ducted with low melting point, low thermal con- 
ductivity materials [I 1, 121. Potts and Wilcox [ll] 
suggested that the flows observed in their experiments 
were due to lack of azimuthal symmetry in the tem- 
perature field caused by the fact that the particular 
Bridgman-Stockbarger soldification apparatus pre- 
cluded any control of the azimuthal temperature field. 
Neugebauer and Wilcox [ 121 quantitatively inves- 
tigated flow symmetries during Bridgman-Stock- 
barger solidification of salol using an experimental 
system which allowed control of the azimuthal tem- 
perature variations. 

In many cases, thermal asymmetries in Bridgman- 
type systems may arise owing to the difficulties 
involved with constructing an axisymmetric heating 
arrangement and in aligning the ampoule axis with 
the axis of the furnace. During growth of high tem- 
perature materials, any misalignment of the ampoule 
will result in an azimuthal variation in the radiation 
view factors for the ampoule. This will lead to asym- 
metry in the temperature of the ampoule wall. 

In this work we examine the character of convection 
in an asymmetrically heated cylindrical ampoule using 
an idealized model of a Bridgman-type configuration. 
The object is to identify trends in the flow behavior 
(rather than attempt to accurately model the exper- 
iments of Neugebauer and Wilcox 1121) and in par- 
ticular to investigate whether conclusions drawn from 
their experiments apply at lower Prandtl numbers. A 
much simpler system is examined in which the tem- 
perature is an increasing function of height (in ref. 
[12] the temperature has a maximum in the melt at 
some distance above the solid-liquid interface and 
subsequently decreases with height). We also impose 
a well-defined thermal asymmetry. In Section 2 we 
formulate the model problem. In Section 3 we outline 
the pseudospectral collocation method used to solve 
the 3D problem. The results are presented in Section 
4 and discussed in Section 5. 
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aspect ratio, 2H/D 
parameter of A, 
dimensionless AT, 
diameter 
acceleration due to gravity 
Grdshof number, Ra/Pr 
half of the cylinder height 
unit vector in the z-direction 
number of collocation points in the 
r-, 0- and z-directions respectively 
Prandtl number, V/K 
cylindrical coordinates 
Rayleigh number, 

maximum value of v.+ 
velocity, temperature, pressure 
radial, azimuthal and vertical 
components of the velocity 
velocities in Cartesian coordinates 
such that v, = c, cos O-c,, sin 0, 
and 21, = z:, sin 0 + rR cos 0 
Cartesian coordinates 
z-coordinate of the location of the 
upper limit of the adiabatic zone. 

gaH ‘( T,, - T,)/Kv 
Reynolds number connected to 

the velocity &,,,,, i&,,,,D/v; 
‘*’ corresponds to the coordinate 
directions (i.e. r, 2, H, x or y) 
time 
temperature at the lower and upper 

end walls respectively (TM < T,,) 

Greek symbols 
St time step 

A T,, maximum azimuthal deviation in 
temperature 

v, K, tc kinematic viscosity, thermal 
diffusivity, thermal expansion 
coefficient 

n domain of the cylinder. 

2. FORMULATION OF THE PROBLEM 

A practical Bridgman-Stockbarger set-up such as 
that decribed by Dahkoul et al. [I 31 consists of three 
distinct thermal zones. The simplest arrangement has 
a hot zone (in which, ideally, the temperature at the 
wall and in the melt should be almost isothermal) and 
a cold zone. These are separated by a gradient zone 
in which a thermal barrier controls the heat transfer 
between the ampoule and the hot and cold zones. 
The basic Bridgman-Stockbarger model used here is 
shown in Fig. 1. The fluid is differentially heated in a 
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FIG. 1. Model Bridgman-Stockbarger configuration. 

vertical cylinder having a height 2H and a diameter 
D. The lower and upper end walls of the cylinder 
are maintained at constant temperatures TM and T, 
respectively (where T, < TH). In this system the pres- 
ence of the thermal barrier is approximated by taking 
the cylinder walls to be adiabatic in the gradient zone. 
In the hot zone we impose asymmetry in the temper- 
ature distribution using a function which causes azi- 
muthal and vertical deviations from isothermal con- 
ditions on the cylinder wall. The maximum azimuthal 
deviation in temperature is given by AT, (see Fig. 1). 
All boundaries of the cylinder are rigid with no-slip 
conditions for the velocities. 

The equations governing energy, momentum and 
mass transport are written in primitive variables for 
cylindrical coordinates and the Boussinesq approxi- 
mation is assumed. We employed H. vRa/HPr, 
vRa/H ‘Pr and T,, - 7’, to non-dimensionalize length, 
velocity, time and temperature respectively. The non- 
dimensional governing equations have the form 

c?T 
-l-AT-gV*gradT 

c?t- - Pr (1) 

dV 
~~ = AV- T{(gradV)*V-gradp+Tk 
at 

(2) 

divV = 0, (3) 

where t is the time and V = (v,, Q,, t’;), p and 
T = (F-- T,)/(?‘,, - T,) respectively represent the 
dimensionless velocity, pressure and temperature. The 
unit vector in the z-direction is denoted by k ; Pr = V/K 
is the Prandtl number, with v the kinematic viscosity 
and K the thermal diffusivity ; Ra = gxH ‘( T,, - TM)/ 
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ICV is the Rayleigh number, with g the gravitational 
acceleration and CI the thermal expansion coefficient. 

Finally, equations (3)-(5) are to be solved as func- 
tions of the independent variables (r, 8, z) in the 
domain R = 10, I/A[ x10, 2n[ xl-l, 11. Here the 
aspect ratio A is defined as 2HfD. 

The following conditions were applied at the initial 
iterate (t < 0) : 

with 

0, = t‘g = v, = 0 

T = a> 6 z).f(& 

(44 

WI 

ftz) = i*j [exp($TA)-exp(e)] (4~) 

and 

(4d) 

The function g(r, 8, zj gives the initial condition for the 
azimuthal variation in temperature. It is convenient 
to express the maximum azimuthal temperature devi- 
ation AT, as a percentage of the axial temperature 
difference TH- T,, i.e. A, = (AT0 x 100%)/(T, - TM). 
Table I gives A, for different values of A, and differ- 
ent aspect ratios 

In order to avoid discontinuities in derivatives of the 
temperature at the abrupt transition between the hot 
zone and the adiabatic zone, the function f(z; e) is 
used. The parameter e is chosen such that were it 
not for the azimuthal temperature perturbation, the 
dimensionless wall temperature due to f’(s ; a) would 
be almost equal to 1 for z > Z,, where Z, is the z- 
coordinate of the location of the upper limit of the 
adiabatic zone. 

The following dimensionless boundary conditions 
are applied at t > 0 : 

v,=vH=v,=O atz= +I andr-2 I (5at 

T=O atz= -1, T=l atz=l WI 

Table 1. Values of the percentage of azimuthal temperature 
difference A0 

-- - .._~ 
Aspect ratio A* AU 

I 0. I 10% 
I 0.02 2% 
1 0.2 20% 
2 0.1 13.2% 
2 0.2 26.4% 

T = g(r, 8, z)f(z) at Y = f and z > Z,(z # rt: 1) 

(5c) 

?T=O atr=landz<Z 
cir A “’ (5d) 

The azimuthal temperature variation on the ampoule 
wall is given by g(l/A, 0. z) and is enforced only for 
the hot zone z > Z,. 

3. NUMERICAL METHOD 

Equations (l)-(3) have been solved using a modi- 
fied version of the Fourier-Chebyshev pseudospectral 
method introduced by Pulicani and Ouazzani [14]. 
For this method the singularity which arises at r = 0 
when using cylindrical coordinates (without axi- 
symmetry) is avoided by using a change of dependent 
variables. The singularity arises because r = 0 is an 
artificial boundary of the computational domain; i.e. 
it occurs only by construction of the coordinate 
system. The change of variables used to cope with the 
singularity is 

_ 
*=T &=21, $=:L)H 

r’ r’ r’I 

vz=!;. andp=!!~ 
r 

Application of (l)-(6) yields a system of equations 
with F, 21,, G:, fi and z&, as unknowns. Obviously, 
f = t’, = Gz = i70 = fi = 0 at r = 0. These equations are 
then discretized with respect to time, t = &it, by means 
of a second order semi-implicit scheme. The latter 
employs a combination of the Adams-Bashforth and 
Crank-Nicolson schemes, namely 

(_ g*)(!qIq =L p-l (7) 

(r_~A)(““‘:-““)=~“.“-,.,*+, 

(8) 

(9) 

with 

and 
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where for convenience we have defined v = (a,, &, 
2X). 

With this method [14], problems encountered with 
satisfying (9) are surmounted by using artificial com- 
pressibility [ 15, 161. A false time step is employed and 
the method is only applicable for steady solutions to 
the system (l)-(5). Because of the stiffness of the 
physical problem at low Prandtl numbers, obtaining 
rapid convergence with this method at high Rayleigh 
numbers is difficult. In order to overcome this 
problem, we have modified the method by introducing 
two iterative processes: an outer iteration which is 
related to each time step and an inner iteration which 

ensures that (9) is satisfied to some small value, E K 1, 
for each outer iterative step. It is clear that for lower 
values of a, this pseudo-unsteady method takes on the 
character of an unsteady calculation. For this reason 
we have used an Adams-Bashforth scheme to dis- 
cretize the convective terms instead of simply taking 
them explicitly [14] at the instant t = n6t in p+ ’ and 
Q?.,,+ I.n+ I, 

A generalized ADI procedure [15] is then applied 
to reduce the problem to the successive solution of 
one-dimensional problems. For clarity, we present the 
method only as applied to the momentum transport 
equation ; it is readily extended to cope with the energy 
transport equation. At each time step the following 

problem is solved : 

( > ] - --A_ v** = v* 
2 - 

[r-:1.)&J = 
v*** 

v** (lOc) r 

where 2. is a strictly positive constant and ,U (p = 0, 
1,. , N,) is the subscript connected to the inner 
iterative process. The operator A occurring in (10) 
has been decomposed so that A = A,+A,+Al. 
Here the A, are related to the independent variables 

r, 0 and z, respectively. Note that for /* = 0, [grad 

UV91 n+ ‘.’ = [grad (p”/r)]“. Equation (10e) has no 
physical meaning until Fiji”+ ’ = 6”’ I.@+ ’ -p+‘+ ‘.p = 0 

(or practically speaking, is sufficiently small). If @‘+ ’ 
is identically zero at each time step the method is no 
longer pseudo-unsteady. The present way to deal with 
the pressure can be time consuming when the number 
of internal iterations N,, is too high. However, since 
we seek steady solutions, the iterative process has been 
introduced only to help the convergence when the 
solution is very stiff. It is stopped as soon as the 
divergence of the velocity reaches a certain value E. 

The maximum value of N, is chosen such that the 
convergence is obtained after a reasonable number of 
outer iterations. However, it should not be so high 
that the divergence of the velocity is E at the beginning 
of the outer iteration. The optimum values of N, and 
E will be defined in the next section. A standard Four- 
ier-Galerkin approximation [17] is employed for the 
solution of (I Oa) while a Chebyshev-collocation 
method [l6] is used to solve equations (lob) and 
(10~). The boundary conditions are introduced by 
replacing the right hand sides of (lob) and (10~) by 
the appropriate terms [ 141. 

The energy equation is solved in the same manner 

as the momentum transport equations, but needs no 
inner iterations to satisfy the divergence equation. The 
solution algorithm takes the following steps : 

(i) with p, ?- ‘, Vn and Tn.- ’ known, we deduce 
@+I andthen p+l; 

(ii) we calculate et’+ ‘.n+’ using p+ ‘, %@ and 

8’~~‘,andthenfinally8”+‘and~“+‘with(lOe). 

In all of the results WC present here, the above 
method requires a distribution of points such that 

II,=;!, k=O ,..., No-1 
” 

(114 

(1 lb) 

i=O,...,N,-l, (11~) 

with N,, N, and N; the number of collocation points 
between r = 0 and l/A, 0 = 0 and 2x, and z = -1 
and 1, respectively. 

In our discussion of the results we shall also refer 
to the residual of 3, denoted Res 3, which is calculated 
on the collocation points of 3 = {T, c’,, u,,, ~1;). 

Furthermore, 

Res 3 = Max,,,,, 
Il~(r,,~~,~,)“+‘-3(r,,~,,z,)“I 

~~~ 6t3(rt, B,, z,)“+ ’ I ’ 

with i=O ,..., N,-l, k=O ,..., NH-l, j=O ,..., 
N:-1. 

The variables u, and 2)) are the velocities in Cartesian 
coordinates such that ~1, = v, cos O-v,, sin 0 and 
u, = v, sin 0 + vH cos 8. We denote the maximum values 
of l),., vO, t’;, v, and L), by L’,,,,, ~~~~~~ L:;,,,, r,,,, and 
v, maX, respectively. As these maxima are calculated at 
the collocation points particular to each method, 
small differences are expected in the results. 

For all the results presented in the following section, 
the starting condition (4b) has only been used for 
Ra = 10. For the others, the starting condition was 
the solution calculated with a lower Ra. The adiabatic 
zone covers one fourth of the cylinder’s height when 
the aspect ratio A = 1 (i.e. Z, = -0.5) and one eighth 
when A = 2 (i.e. Z, = -0.75). The calculations have 
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FIG. 2. Mesh used for the FIDAP calculations. 

been performed on a Cray XMP/24 computer using a 
spatial resolution of N, x NH x NZ = 13 x 20 x 3 1 when 
A = 1 and N,x NHx N: = 13x20~61 when A = 2. 
For all calculations the parameter i of (10e) is equal 
to 1.3, 20 < N,, < 30, and the time step fit chosen 
between IO-- 4 and lo- ’ according to the stiffness of 
the solution. Note that we stopped the calculations 
when the divergence div V z IO-* and Res V = IO-“. 

No significant change in the values of the velocity 

and temperature fields occurs if div V and Res V are 
decreased further. For the problem described here a 
comparison has been made between our method and 
the finite element code FIDAP [ 18, 191. For FIDAP 
an irregularly spaced Cartesian grid with nodes 
N,Y x NY x NZ = (9 x 11 x 31) was employed (see Fig. 

2). 
For the purpose of presenting the results we define 

the Reynolds number Re*,,, = U*,,,D/v (which is 

connected to the velocity), where ‘*’ corresponds to 
the coordinate directions (i.e. Y, z, B, x or y). 

4. RESULTS 

Table 2 shows the results of a comparison between 
our method and the finite element code FIDAP [I& 
191 for Pr = IO-‘. The values of Rermax, Ret,,, and 

R% maX were obtained with Ra = 250,250O and 15 000, 
AH = 20% and A = 1. Clearly, there is good agree- 
ment between these two methods for Ra between 250 
and 2500, while for Ra = 15 000, the poor agreement 
is only due to the smaller number of points in the Z- 
direction employed for FIDAP. Table 3 summarizes 
the details of our computations for Pr = 10 _ 2, A = 1, 

2 and 2500 < Ra < 64000, with 0 < A, < 21%. A 
comparison of the velocity fields in the 0 = 0” and 

Table 2. Comparison between results obtained from the spectral method and 
from FIDAP 

RU 

250 
2500 

15000 

Spectral FIDAP 

Rermhx Ret.,,, Re,,,,, ReTmaX Re,.,,, Re, max 

10 I 20 12 8 21 
60 61 103 61 69 104 

263 192 286 295 216 386 

Table 3. Summary of the results for Pr = lo-’ 

Ra 

2500 

6400 

15000 

24 000 

64 000 

A A0 6r Re,,,, ReOmdx Re: mar 

1 0 lo-4 70 0 122 
1 0.02 10m4 69 7 120 
1 0.2 lOm4 61 56 103 
2 0.1 tom5 69 44 114 
2 0.2 10m5 69 59 125 

1 0.2 1o-4 112 123 168 
2 0. I lo- 4 128 99 191 

1 0 lO-4 205 0 314 
1 0.02 lo-4 222 42 307 
1 0.2 lo-4 220 254 286 
2 0.1 10-S 209 175 294 
2 0.2 lo-5 188 228 425 

1 0 1om4 242 0 384 
1 0.02 lo-4 267 62 376 
1 0.2 7x 1o-5 318 363 373 

1 0 10m4 338 0 583 
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Ra = 2500 

Ra = 24000 

FIN. 3. Comparison of the velocity fields in the 0 = 0“ and 180 sections and the (r,z) plane at z = 0 with 
A,, = 2% and Ra = 2500 and 24000. Aspect ratio A = I and Pr = 10m’. 

180 sections for A = I, A, = 2% and Ra = 2500 and 
24 000 is given in Fig. 3. The flow asymmetry is barely 
perceptible at the lower Ru. Comparison of Fig. 3 
with Fig. 4, which shows the velocity fields for A = 1, 
A,! = 20% and Ra = 2500, 15 000 and 24000, reveals 
the effect of increasing the temperature asymmetry. 
The effect of increasmg Ru at fixed AH is also seen in 
Fig. 4. Note that the locations of the roll centers 
change as Ra is increased. Figure 5 depicts the velocity 
and temperature fields for three vertical sections at 
Ra = 15 000 for A,, = 20%. Horizontal sections of the 
velocity field for the Ru = 15 000 case are shown in 
Fig. 6. 

The effect of increasing the aspect ratio is seen upon 
comparison of Fig. 4 with Fig. 7, which has been 
calculated for Ra = 2500 and 15 000 with A,, = 0.2 
(A, = 26.4%) The basic asymmetry of the flow is not 
affected significantly by the increase in aspect ratio, 
although the centers of toroidal rolls are shifted. 

Comparison of Figs. 8 and 9 for Ra = 15 000 and 
A,, = 13.2% with Figs. 10 and 11 for Ra = 2500, 
A, = 13.2% reveals that in the higher Rayleigh num- 
ber case two additional cells have formed in the upper 
half of the cylinder. These are barely perceptible in 
the Ra = 2500 case. At higher values of AH these cells 
are able to develop well for lower values of Ra. In Fig. 
7 the two-fold increase in A. leads to well developed 
upper cells even at Ra = 2500. 

Figures 12 and 13 depict the results obtained for 
Pr = 1, Ra = Gr = 2.5 x 105. Comparison of these 
results with Figs. 10 and 11 (Pr = lo-‘, Ru = 2500, 
Gr = 2.5 x lo’j reveals the effect of increasing Pr while 
holding the Grashof number fixed (Gr = Ru/Pr). 
There is a decrease in the degree of asymmetry in the 
flow for the lower Prandtl number case. The cylinder 
is dominated by a large asymmetric roll which extends 
along most of the cylinder with a smaller secondary 
roll along the bottom of the cylinder. The isotherms 
which extend into the adiabatic zone have been modi- 
fied by the flow and are considerably flatter than their 
low Pr counterparts. 

5. DISCUSSION AND SUMMARY 

The results of an experimental investigation into 
the nature of asymmetric flow during Bridgman- 
Stockbarger directional solidification of salol by 
Neugebauer and Wilcox [ 121 led to the conclusion that 
the degree of flow asymmetry decreases with increas- 
ing convective flow velocities. Furthermore, they con- 
jectured that for the same experimental conditions, 
low Prdndtl number fiuids’ exhibit correspondingly 
less asymmetry owing to the more rapid flow velocities 
which would necessarily ensue. We have carried out 
calculations at lower Prandtl numbers to investigate 
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FIG. 4. Comparison of the velocity fields in the N = 0‘ and 
180’ sections with A, = 20% and Ru = 2500, 15OC@, and 

24000. Aspect ratio A = 1 and Pr = lo--'. 
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this. It can be discerned from the results presented in 
Section 4 that our calculations predict that for a fixed 
value of A, and Pr an increase in Ra (in practical 

terms caused by an increase in AT = T, - TM) tends 
to amplify the asymmetry. Indeed, from Table 3 it can 
be seen that the radigkdnd vertical velocities increase 
in proportion to ./I?Q, while the azimuthal velocity 
increases linearly with Ra. Examination of the exper- 
iment des~rjption and results of ref. 1121 reveal that 
when AT was increased, AT,, the azimutha variation 

in temperature, remained the same. In other words, 
the relative temperature asymmetry AH was decreased. 
Thus, the observed decrease in flow asymmetry can 

be expiained merely by the fact that the azimuthal 
temperature variation was less significant for the 

higher Ra cases. As expected, this trend is confirmed 
by our calculations. 

The prediction [ 121 that a higher Pv fluid will exhibit 
more asymmetry in the flow than the low Pr case is 
true (at least as far as the flow pattern is concerned) 
if the Rayleigh number is greater for the high Pr case. 
That the flow asymmetry is reduced due to an increase 
in flow velocity (Reynolds number) contradicts our 
results presented in Table 3 and Figs. 4-9. It is possible 
that for higher Rayleigh number flows than those 
examined here, and for temperature boundary con- 
ditions corresponding to flux conditions rather than 

an imposed temperature profile, the temperature 
asymmetry could be reduced by convective heat trans- 
port within the cylinder. In this instance an increase 

in flow velocity would then result in a decrease in 

asymmetry. 
In summary, we have examined the consequences 

of azimuthal asymmetry in ampoule wall temperature 
in a differentially heated cylindrical ampoule con- 
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FIG. 5. Velocity and tem~rat~re fields with A,, = 20% and Ra = 15 000 for B = 0” and 180”, 54” and 234”. 
90” and 270“. Aspect ratio A = I and Pr = lo-‘. 
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FIG. 6. Velocity field in the (Y, 0) plane with A, = 20% and &I = 15000 at z = 0.75,0, and -0.75. Aspect 
ratio A = 1 and F’r = lo-*. 
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FIG. 7. Velocity fields with A0 = 26.4%, Ra = 2500 and 15000 at 0 = 0” and ISO”, 54” and 234”, 90” and 
270”. Aspect ratio A = 2 and Pr = 10-2. 
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FIG. 8. Velocity and temperature fields with A0 = 13.2% and Ra = 15 000 at 0 = 0” and 180”, 54” and 234”, 
90” and 270”. Aspect ratio A = 2 and Pr = IO-‘. 
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8 = 56,234” 8 = 90”, 270” 

FIG. 10. Velocity field with A0 = 13.20/o and Ru = 2500 at 0 = 0’ and 180’. 54’ and 234‘, 90 and 270’. 
Aspect ratio A = 2 and Pr = lo-‘. 
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FIG. Il. Velocity field in the (r,@ plane with Ra = 2500 at IT = 0.5, 0, -0.5, and -0.87. Aspect ratio 
.4 = 2and Pr= 10--2. 
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FIG. 12. Velocity and temperature fields with A0 = 13.2% and Ra = 250 000 at 8 = 0” and 
234”. 90” and 270”. Aspect ratio A = 2 and Pr = 1. 
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FIG. 13. Velocity field in the (r, 0) plane with Ra = 250000 at z = 0.5, 0, -0.5, and -0.87. Aspect ratio 
A=2andPr= 1. 
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taining an incompressible Newtonian fluid. The study 
was motivated by recent observations of non-axi- 
symmetric convection during directional solidification 
experiments conducted with low melting point, low 
thermal conductivity materials [I 1, 121. Our results 

indicate that for a fixed value of the relative asym- 
metry in temperature AH, the degree of asymmetry in 
the flow is accentuated as the Rayleigh number is 
increased. For fixed Pr and Ra, the flow asymmetry 
increases if A0 is increased. 
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CONVECTION DANS UN CYLINDRE CHAUFFE DE FACON ASYMETRIQUE 

R&me-Dans des experiences de solidification dirigee (verticale) recentes, de la convection non-axisy- 
mttrique a et& observte. 11 ftit montri que la particularite de I’tcoulement est IiCe au manque de symetrie 
azimutale du champ de temperature a la paroi d’un cylindre vertical differentiellement chauffe. Motive par 
ces observations nous avons examine les consequences de deviations azimutales apportees a un champ de 
temperature axisymetrique. Nous montrons que le degre d’asymttrie developpe par l’ecoulement depend 
du rapport, A,, entre le maximum de difference de temperature azimutale et le maximum de difference de 
temperature verticale. Pour an valeur fixire de AB, ce degre d’asymttrie croit si on augmente les vitesses de 

I’tcoulement (i.e. si on augmente le nombre de Rayleigh). 

KONVEKTION IN EINEM ACHSENSYMMETRISCH BEHEIZTEN ZYLINDER 

Zusammenfassung-Ktirzlich wurde in vertikal ausgerichteten Erstdrrungsexperimenten nicht-achsen- 
svmmetrische Konvektion beobachtet. Diese Erscheinung wurde so erklirt, da0 die Asymmetrie durch 
hnen Mange1 von Symmetrie des aufgepragten Temperaturfeldes in azimuthaler Richtung hervorgerufen 
wird, mit der Folge, da13 die Symmetrie der Stromung mit zunehmender Geschwindigkeit kleiner wird. 
Diese Beobachtungen waren AnlaB fur uns, die Auswirkungen nicht-achsensymmetrischer Wand- 
temoeraturverteilungen in einem in vertikaler Richtung unterschiedlich beheizten Zylinder zu untersuchen. 
Es wird gezeigt, da5Ider Grad der Asymmetrie der Stromung vom Verhaltnis A0 zwischen den Amplituden 
der maximalen azimuthalen und vertikalen Temperaturunterschiede abhlngt. Fur einen festen Wert dieses 
Verhaltnisses nimmt die Asymmetrie der Striimung mit wachsender Striimungsgeschwindigkeit (Rayleigh- 

Zahl) zu. 

KOHBEKHUII B ACHMMETPHYHO HAI-PEBAEMOM HHJIkiH~PE 

hmoTaqun-B paHee npoBeAeHublx 3KcnepaMeHTax no seprmcanbnoMy xanpannennoMy 3arsepnesa- 
nmo na6nronanacb neocecaMhterpmnraa rconsemnin. E&no cnenano npennono~eeee, ST0 acax4MeTprin 
BbI3BaHa OTCyTCTBHeM a3NMyTWIbHOti CllMMeTpHH B 3aAaBaeMOfi TeMIlepaType Ei 6yAe’r yMeHbUlaTbCff C 

pOCTOM CKOpOCTek B AaHHOii pa6OTe H3y’JalOTCK CJIeACTBHII OTKJIOHeHHii OT yCJIOBHfi C OC4?CHMMeTpHY- 

HOfi TeMnepaTypOti CTeHKH B BepTHKUbHOM UWIHHAp‘Z C HepaBHOMepHbIM Harp’ZBOM. nOKZ%iHO, YTO 

CTelIeHb aCHMMeTpHH TeWHHIl 3aBHCNT OT OTHOUIeHBIl MeKU.ly aMlI.i’IHTyAaMH MaKCHMaJIbHbIX a3HMyTa- 

AbHOfi B BepTHKa.“bHOii pa3HOCTeii TeMnepaTyp B np%l IIOCTORHHOM 3HaYeHHB 3TOrO OTHOIUeHBIl 

aCllMMeTPHR TeveHBli yBenHsiBaeTcn c POCTOM CKOpOCfA (wcna P3nerr). 


